222 research outputs found

    A Recursive Method for Enumeration of Costas Arrays

    Full text link
    In this paper, we propose a recursive method for finding Costas arrays that relies on a particular formation of Costas arrays from similar patterns of smaller size. By using such an idea, the proposed algorithm is able to dramatically reduce the computational burden (when compared to the exhaustive search), and at the same time, still can find all possible Costas arrays of given size. Similar to exhaustive search, the proposed method can be conveniently implemented in parallel computing. The efficiency of the method is discussed based on theoretical and numerical results

    PUMA criterion = MODE criterion

    Full text link
    We show that the recently proposed (enhanced) PUMA estimator for array processing minimizes the same criterion function as the well-established MODE estimator. (PUMA = principal-singular-vector utilization for modal analysis, MODE = method of direction estimation.

    Efficient joint maximum-likelihood channel estimation and signal detection

    Get PDF
    In wireless communication systems, channel state information is often assumed to be available at the receiver. Traditionally, a training sequence is used to obtain the estimate of the channel. Alternatively, the channel can be identified using known properties of the transmitted signal. However, the computational effort required to find the joint ML solution to the symbol detection and channel estimation problem increases exponentially with the dimension of the problem. To significantly reduce this computational effort, we formulate the joint ML estimation and detection as an integer least-squares problem, and show that for a wide range of signal-to-noise ratios (SNR) and problem dimensions it can be solved via sphere decoding with expected complexity comparable to the complexity of heuristic techniques
    corecore